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Superdirectivity has been and remains an exciting concept to maximize the radiation
of a given array in the desired direction. Many attempts are scattered throughout the
open literature by engineers and scientists hoping to cage this elusive fairy. Herein,
we re-visit recent work examining the practicality of this concept for the HF band,
where efficiencies on receive are much less a concern due to the dominance of external
noise. Analytical results in the ideal case are first discussed followed by considerations
on the sensitivity of the excitations. Afterwards, application to simulated arrays of
half-wave dipoles as well as electrically small monopoles and folded helical antennas
is provided. While directivity of such arrays may be increased using superdirective
excitations, many detriments limit their practical usefulness in the HF band. These
include sensitivity of the excitations and necessity of compensation using the
embedded element patterns. Furthermore, it is found that the superdirective
excitations investigated within are best suited for low number of elements. In general,
but also as element number increases, the Hansen-Woodyard endfire array remains
efficient, robust, and largely agnostic to element type.

1. Introduction

Superdirectivity is a natural follow-on from array synthesis theory to push the limits of
what is possible. First discussed in the previous century [1], this concept has attracted many
engineers and scientists to realize its claims. Time after time, however, practical
superdirectivity has shown itself elusive. This is due to a multitude of factors, including
low efficiency, sensitive tolerances, and high localized currents and voltages, to name a
few [2]. Some more recent works claim several of these issues can be ignored, or at the
very least are mitigated, in the HF band on receive [3], [4]. The authors of these works
argue that this is the case due to the high external noise that renders low efficiency of
superdirective excitations a non-issue and improvements in technology like software
defined radios for the tolerances. The aim of this paper is to show that while these realities
may be the case, the glaring difficulties of exacting excitations remain to keep
superdirectivity an impracticality even with the advantages found in the HF band. Of
course there are ways to address these problems, but to do so in a practical realization
remains an open challenge. This is due to requiring more complete knowledge of the
system than is typically known (e.g. exact in situ embedded element patterns). Accordingly,
it is the conclusion of the authors that the Hansen-Woodyard superdirective excitation [5]
remains the primary approach for endfire arrays, at least for the time being.



2. Efficiency for Receive at HF

The primary argument for superdirectivity at HF is driven by dominance of external noise
rendering efficiency irrelevant on receive. This is expressed in (1), adapted from [3], where
n is the efficiency, S,y is the desired signal, D(6, ¢) is the directivity in the direction of
the incident signal, and N,,; and N;,; are the external and internal noise, respectively.
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That external noise dominates in the HF band is well understood with 10-30 dB greater
levels over internal noise for over-the-horizon radar receivers [6] and noise temperatures
in excess of 30,000 to even millions of Kelvins in the HF band [7]. All this suggests that
efficiency on receive is of lesser importance. This reasoning is similar to why impedance
match is often not as important on receive [6]—any enhancement improves the reception
of noise by the same amount! Of course, the efficiency cannot be so low that external noise
is brought to the level of internal noise.

3. Generating Superdirective Excitations

Different methods of generating superdirective excitations have been investigated in the
past. For example, early approaches used an optimization approach to maximize directivity,
recognizing the quadratic form of the definition of directivity [8]. Herein, we follow [9],
[10] in using the Chebyshev polynomial to generate superdirective endfire excitations.
There are three cases: 1) “other than broadside case” which is used to steer the pattern away
from broadside and towards endfire; 2) “endfire case” which specifically is used to design
endfire arrays; and 3) “optimum endfire case” which in essence doubles the visible region
by folding it upon itself. The latter case leads to twice as many side lobes as normal, lower
beamwidth, and therefore increased directivity. For comparison, uniform amplitude phase
steering and the Hansen-Woodyard excitation [5] are included as well.

4. Superdirective Array Factors

First, we examine the array factors. The endfire directivities of array factors with 5 and 11
elements are plotted in Fig. 1. We see that Cases 2 and 3 exhibit superdirectivity up to 0.25A
and 0.4-0.45\ spacing, respectively. This is especially true at smaller element spacings.
Conversely, Case 1 is largely invalidated by the Hansen-Woodyard excitation.

Patterns for 5 and 11 elements at 0.15A and 0.25X\ elements spacings are plotted in Fig. 2.
It is clear how Case 3 has more side lobes, narrower beamwidth, and therefore higher
directivity. We also see how at 0.25X spacing, Case 2 and uniform amplitude resemble each
other. The Hansen-Woodyard excitation directivity remains consistently higher than
uniform amplitude, and Case 3 exceeds all the other excitations.

For completeness, the excitation values for 5 elements at 0.15A spacing (Fig. 2(a)) are given
in Table I. The uniform amplitude phase gradient is simply —kd, where k is the free-space
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Figure 1. Endfire directivities of linear array factors with (a) 5 and (b) 11 elements. Note
the difference in vertical axis.

wave number and d is the element spacing. Notable, the highest directivity excitation of
Case 3 is nearly anti-phase between the elements, which is emblematic of the efficiency

issues that appear when applying these excitations to elements with realistic losses [2].

Table I. Excitations for 5 elements at 0.15\ spacing.

Uni. Amp. Hansen-Woodyard Case 1 Case 2 Case 3

12108° 12£175.4° 0.44,108° 0.202 —108° 0.142 —14.9°
1254° 14£87.7° 0.142 —126° 0.502£126° 0.49£172.5°
120° 120° 0.76£0° 0.6520° 0.6920°

12 — 54° 12 —87.7° 0.14£126° 0.502 —126° 0.492—172.5°
12 —-108° 12-1754° 0.44« —108° 0.202£108° 0.14£14.9°

5. Sensitivity of Excitations

While the results in the previous section show promise, one of the major issues with
superdirective arrays has been and remains the sensitivity/tolerance of the excitations [2].
To illustrate this, the ideal excitations are perturbed by uniformly distributed errors of £5%
of the maximum amplitude and +5°. A Monte Carlo analysis is run with 1000 runs and
histogram results plotted in Fig. 3 for 5 and 11 elements with 0.15\ and 0.25X\ spacings.
Vertical black line denotes endfire directivity without errors.

For 5 elements, we see that Case 2 and Case 3 outperforms the Hansen-Woodyard
excitation for 0.15A and 0.25\ spacing, respectively. However, when the number of
elements is increased to 11, the Hansen-Woodyard excitation is the clear best option as the
superdirective excitations either suffer extreme sensitivity or have lower directivity to
begin with. These results suggest that these superdirective excitations are only suitable for
a low number of elements.
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Figure 2. Array factors for (a) 5 elements at 0.15A spacing, (b) 5 elements at 0.25)
spacing, (c) 11 elements at 0.15A spacing, and (d) 11 elements at 0.25A spacing.
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Figure 3. Histograms showing distribution of endfire directivity for Monte Carlo analysis
runs. Vertical black line denotes directivity of excitation without errors. (a) 5 elements at
0.15X\ spacing, (b) 5 elements at 0.25A spacing, (¢) 11 elements at 0.15A spacing, and (d)
11 elements at 0.25\ spacing.

Array factors for 5 elements and 0.15A and 0.25A spacings are shown in Fig. 4. Immediately
apparent is the relative stability of the Hansen-Woodyard excitation array factor compared
to Cases 2 and 3. Notably, the sidelobes and backlobes of the Case 2 and 3 excitations show
dramatic variation across the Monte Carlo runs.

6. Application to Dipole Array
5 element arrays of copper half-wave dipoles (0.478\ length) are simulated in Altair Feko
varying the spacing. The directivity of an array with 0.15A spacing and the desired array
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Figure 4. Array factors resulting from Monte Carlo runs. 5 element arrays. Black array
factor corresponds to excitation without errors. (a) Hansen-Woodyard excitation on 0.15A
spacing. (b) Case 2 excitation on 0.15A spacing. (c) Hansen-Woodyard excitation on 0.25\
spacing. (d) Case 3 excitation on 0.25\ spacing.

factor are plotted in Fig. 5. Immediately apparent, directly applying the superdirective
excitations to the simulated array leads to pattern distortions compared to the desired array
factor. However, the uniform amplitude and Hansen-Woodyard excitations exhibit
reasonable agreement to the array factor and showing the increase in directivity due to the
element directivity as well.

The poor performance of the superdirective excitations is due to the non-isotropic
embedded element patterns (EEPs). In other words, the EEPs impose a non-uniform
weighting on the excitations when transferring to the far-field. For the superdirective
excitations, owing to their sensitivity as seen in the previous section, this causes significant
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Figure 5. 5 element half-wave dipole array simulated in Altair Feko. 0.15\ spacing. (a)
Directivity of endfire array. (b) Desired array factor.

pattern distortions. This can be addressed analytically through a least squares problem to
compensate the superdirective excitations as shown in (2) where [E] is a column vector of
the desired pattern or array factor, [EEP] is a matrix of the embedded element patterns, and
[a] is the array excitation. M is the number of observation points and N is the number of
elements.

[Elmx1 = [EEP]yxnlalnx1 = [al = ([EEP]'[EEP])~'[EEP]"[E] 2

The same patterns in Fig. 5(a) are plotted in Fig. 6 with the superdirective Cases 1, 2, and
3 excitations compensated using (2). Now the patterns of the superdirective excitations
better resemble the desired array factor in Fig. 5(b). The necessity of compensating the
superdirective excitations due to their sensitivities further demonstrates the difficulty of
using such array weights. More work is needed to investigate the amount and accuracy of
the EEP needed to yield good superdirective patterns. For the HF band, due to the difficulty
of measuring the EEPs in a deployed array, especially one that can be rapidly stowed and
deployed, the superdirective excitations become quite impractical despite their benefits.

Radiation efficiencies are plotted in Fig. 7. Both the uniform amplitude and Hansen-
Woodyard excitations are near 100%. However, the three superdirective excitations exhibit
the well-known issues with low radiation efficiencies [2], most notable in Case 3.
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Figure 6. 5 element half-wave dipole array simulated in Altair Feko. 0.15A spacing.
Excitations of Cases 1, 2, and 3 are compensated with the embedded element patterns.
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Figure 7. Radiation efficiency of array excitations with 5 element copper half-wave dipoles.

7. Superdirectivity in Arrays of Electrically Small Elements

The size of resonant monopoles in the HF band is physically large, on the order of 2.5m-
25m. To this end, electrically small elements are of interest to meet practical size
constraints. Two five element linear arrays made from electrically small elements are
investigated numerically. The first is an array of short monopoles of height 0.5 m. The
second is an array of 6 arm, 2.5 turn spherical folded helices similar to those described by
[11]. Both elements have the same radial extent and are operated at 20 MHz, corresponding



to an electrical size of ka=0.217. When considered as a single isolated element, both the
short monopole and the folded helix have similar far field patterns, but they distribute
stored energy differently in their near fields, and the folded helix is investigated as a means
of reducing the effects of coupling between array elements.

Each array is considered in the three cases described by [9], [10], the Hansen-Woodyard
excitation [5], and uniform excitation. Both arrays have significant mutual coupling
between elements, which affects both the element match as well as introducing pattern
asymmetry and variation between elements. To achieve the desired pattern for the
superdirective excitations, the compensation in (2) is applied based on the EEPs simulated
in Altair Feko.

A comparison of the radiation efficiencies resulting from exciting the two arrays in the
superdirective and uniform cases is shown in Fig. 8. The folded helix has a larger radiation
resistance than the short monopole and can achieve high efficiency as an isolated element
even at small electrical sizes [11]. This high efficiency is maintained under larger element
spacing but ultimately degrades below 0.3\ spacing and is generally lower for more
directive excitation schemes. Due to both the short monopole’s poor radiation resistance
and the high coupling between elements, the monopole array has poor efficiency across the
element spacings considered.
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Figure 8. Radiation efficiency of (a) the short monopole and (b) the folded helix arrays.

The directivity achieved by the arrays is shown in Fig. 9. The directivities are similar for
both arrays and slightly lower than those for ideal elements, suggesting that the excitation
compensation is effective in achieving patterns close to those achieved by coupling-free
arrays.

Figs. 10 and 11 compare the effects of excitation amplitude and phase error for the two
arrays with 0.15X spacing. Errors are generated in the same way as described in Section 5
of uniformly distributed errors of £5% of the maximum amplitude and +5°. The folded
helix array displays substantially less pattern variation than the monopole array and retains
stable patterns into some of the superdirective cases. This decreased susceptibility to
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Figure 9. Endfire directivity realized by (a) the short monopole and (b) the folded helix
arrays.

excitation errors suggests that the folded helix is successful in reducing the effects of
mutual coupling between array elements. In general, however, the superdirective cases
remain sensitive to excitation errors in both arrays.
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Figure 10. Monte-Carlo analysis of the short monopole array pattern’s sensitivity to errors
in the excitation amplitude and phase. The array has 0.15\ spacing. For each scheme, the
directivity for ideal excitation is compared to that with amplitude and phase errors.
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Figure 11. Monte-Carlo analysis of the folded helix array pattern’s sensitivity to errors in
the excitation amplitude and phase. The array has 0.15A spacing. For each scheme, the
directivity for ideal excitation is compared to that with amplitude and phase errors.

8. Conclusion

Superdirectivity is investigated from a primarily theoretical standpoint for use in the HF
band on receive due to the dominance of external noise. Application to simulated half-wave
dipole array as well as arrays of electrically small monopoles and folded helix antennas are
also included. While attractive in the ideal case with no errors and isotropic elements, the
sensitivity of superdirective excitations with implications on both generating the correct
amplitudes and phases as well as compensating for realistic EEPs drastically reduces the
practicality of superdirective excitations in the HF band. This is especially true as the latter
is much harder to accurately obtain. Conversely, the Hansen-Woodyard excitation remains
efficient, robust, and largely agnostic to specific EEPs, especially as element number
increases. Of course, radiation efficiency must be considered carefully in the transmit mode.
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